Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Med Res ; 29(1): 229, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38610037

RESUMO

BACKGROUND: Depression is the common mental disease after stroke. Our objective was to investigate the correlation of Life's Essential 8 (LE8), the recently updated evaluation of cardiovascular health, with the occurrence of post-stroke depression (PSD) and all-cause mortality among United States (US) adults. METHODS: Participants with stroke were chosen from the National Health and Nutrition Examination Survey (NHANES) between 2005 and 2018. The relationship between LE8 and the risk of PSD was assessed through weighted multiple logistic models. A restricted cubic spline was employed for the examination of correlations. To demonstrate the stability of the results, sensitivity analysis and subgroup analysis were carried out. Furthermore, Cox regression models were used for the correlation between LE8 and all-cause mortality. RESULTS: In this study, a total of 1071 participants were included for analysis. It was observed that LE8 score and PSD risk shared an inverse relationship in per 10 points increase [OR = 0.62 (0.52-0.74, P < 0.001)] in logistic regression models. The analysis of restricted cubic spline demonstrated approximately a noticeable inverse linear association between LE8 score and PSD risk. Sensitivity analysis verified the stability of the findings. Moreover, no statistically significant interactions were identified in subgroup analysis. A reverse association between LE8 score and all-cause mortality was also observed with a 10-point increase [HR = 0.85 (0.78-0.94, P < 0.001)] in cox regression models. CONCLUSIONS: A negative correlation was discovered between LE8 score and PSD and all-cause mortality risk among US adults. We need to conduct large-scale prospective studies to further validate our results.


Assuntos
Depressão , Acidente Vascular Cerebral , Adulto , Humanos , Inquéritos Nutricionais , Estudos Prospectivos , Acidente Vascular Cerebral/complicações , Modelos Logísticos
2.
Heliyon ; 9(11): e21559, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027950

RESUMO

Shenzhen Bay (SZB) in southern China is a typical eutrophic area, with internal pollution from its sediments representing an important nutrient source. However, the transport paths and sources of sediments in SZB remain unclear, making it difficult to analyze the nutritional budget and propose effective sediment management strategies. To address this, we linked a sediment fingerprinting technique to a Bayesian mixing model (MixSIAR) and conducted provenance analyses. We collected particle samples from SZB sediment and surrounding areas, including the Shenzhen River (SZR), Pearl River Estuary (PRE), and the northern South China Sea (SCS). Two groups of natural tracers were measured to trace different phases of sediments: (1) C and N parameters for the fates of the organic phase of sediments, and (2) rare earth element (REE) patterns for the provenance of mineral fragments. The results showed that the concentrations of total organic C and total N were 0.89-1.44 % and 0.05-0.13 %, respectively. MixSIAR suggested that fluvial inputs from SZR and PRE contributed 46.6 % and 30.3 % of organic matter, respectively. The organic matter in the PRE mainly originated from sewage and the upper reaches of the Pearl River. The concentration range of REEs in SZB sediments was 153.12-480.09 mg/kg with clear enrichment for light REE. MixSIAR results showed that the mineral fragments mainly originated from the outer bay (SCS and PRE, which contributed 57.2 % and 32.7 %, respectively). These results indicate that organic pollution follows a different path from the inorganic base, which is mainly related to anthropogenic input from land. This study highlights that complex sediment transport processes and pollution intrusions from the Pearl River are the issues that must be considered for eutrophication restoration in SZB.

3.
Environ Res ; 216(Pt 2): 114586, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36272598

RESUMO

Phosphorus speciation in the sediments is regulated by a series of physicochemical and microbial processes, and directly affects water phosphorus pool. However, the influence of culture activities and microbial metabolism on the sedimentary phosphorus speciation is poorly studied. In this study, we compared the abundance of distinguishable phosphorus phases and other physicochemical properties of sediments from oyster-farming areas and reference areas. The Geochip 5.0 technique was introduced to reveal the microbiological mechanisms of phosphorus metabolic alteration. The results showed that oyster culture enhanced the bioavailability of phosphorus in sediments. The free organic phosphorus was reduced significantly, whereas the free inorganic phosphorus and iron-bound phosphorus greatly increased in the oyster culture area (P ≤ 0.05). Moreover, the results of Geochip showed that the oyster culture reshaped the microbial network structure in sediments, with typical phosphate-solubilizing and phosphorus-accumulating microbes being enriched by 17.76% and 10.60%. The abundance of functional genes related to the main phosphorus cycle pathways were also significantly increased (P ≤ 0.05) in the culture area compared to the reference area. This work suggested that oyster culture can greatly improve the microbial phosphorus metabolism and provided insights into the environmental recovery and reconstruction from marine aquaculture activities.


Assuntos
Ostreidae , Poluentes Químicos da Água , Animais , Fósforo/análise , Sedimentos Geológicos/química , Monitoramento Ambiental/métodos , Aquicultura , China , Poluentes Químicos da Água/análise
4.
Mar Pollut Bull ; 186: 114453, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36495614

RESUMO

Some algae possess a multi-morphic life cycle, either in the form of free-living solitary cells or colonies which constantly occur in algal blooms. Though colony formation seems to consume extra energy and materials, many algae tend to outbreak in form of colonies. Here, we hypothesized that colony formation is a selected evolutionary strategy to improve population competitiveness and environmental adaptation. To test the hypothesis, different sizes of colonies and solitary cells in a natural bloom of Phaeocystis globosa were investigated. The large colony showed a relatively low oxidant stress level, a nutrient trap effect, and high nutrient use efficiency. The colonial nitrogen and phosphorus concentrations were about 5-10 times higher than solitary cell phycosphere and cellular nutrient allocation decreased with the enlargement of the colonial diameter following the economies of scale law. These features provide the colony with monopolistic competence and could function as an evolutionary strategy for competitive adaptation.


Assuntos
Haptófitas , Eutrofização , Aclimatação
5.
Sci Total Environ ; 817: 152891, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-34995586

RESUMO

The occurrence of the 'black-malodorous phenomenon' in a waterbody is a clear sign of a highly eutrophic bay, the formation of which is associated with microbial sulfur and iron metabolism in the sediments. Oyster farming restoration has been widely studied as an important method for treating eutrophication and related ecological problems. However, few studies focus on the ecosystem-level consequences of oyster farming concerning microbial sulfur and iron cycles in the sediment. Here, we compared the physicochemical features and microbial functions of oyster farms with those of reference areas using the Geochip5.0 technique. Our results showed a significant reduction of acid volatile sulfide (AVS) content associated with oyster farming, thus alleviating the black-malodorous status of Shenzhen Bay in China. Oyster farming created loose and porous sedimentary structures and stimulated the oxidation of black-odorous compounds. Moreover, we observed that the introduction of oysters changed microbial biodiversity significantly based on gyrB gene structure, with typical sulfur- and iron-cycling microbes being enriched. We also demonstrated that microbial abilities involved in sulfur and iron metabolism were greatly increased in oyster farming areas compared with reference areas. Under such circumstances, some cascading processes (AVS uptake and rates of organic matter turnover) were improved, which eventually contributed to black odor reduction. From the microecological perspective, we conclude that the biodeposition of oysters was the key factor for water retention and improvement of microbial metabolism. This study suggests that biodeposition shapes the microbial functional communities in adjacent territories and presumably alleviates the black-malodorous compounds in sediments.


Assuntos
Microbiota , Ostreidae , Animais , Sedimentos Geológicos/química , Ferro/química , Ostreidae/metabolismo , Enxofre
6.
Front Microbiol ; 12: 716201, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858359

RESUMO

Oysters are ecological engineers, and previous studies have examined their role as competent facilitators of ecological restoration. However, the decisive role of oysters in the aquatic environment is still debatable because oyster biodeposition (OBD) may also increase the nutrients enriched in sediments. In order to better interpret this problem, we sampled sediment cores from representative oyster culture areas and uncultured areas in Shenzhen Bay. The results have shown that the TOC (total organic carbon) and TN (total nitrogen) decreased significantly (p < 0.05) at the surface sediment layer (0-20-cm deep) and the sediment layer (20-40-cm deep) of the oyster site compared with the reference site. The decreased TOC and TN were also observed at 60- to 100-cm sediment depth in the oyster site. This indicated that the OBD significantly impacted the concentration of TOC and TN in the sediment. To confirm the alleviative role of OBD, we conducted stable isotope (δ13C and δ15N) analyses, which further demonstrated the presence of heavier and less lighter forms of organic carbon and nitrogen sediment. The surface sediment layer (0-20 cm) at the oyster site showed 8% more δ13C‰ compared with the control site (p < 0.05), reflecting the reduction in the TOC. In order to reveal the potential microbial mechanisms involved in OBD, we performed a functional analysis using the Geochip5 advanced microarray technology. Regarding carbon metabolism, we observed that genes (encoding pullulanase, glucoamylase, exoglucanase, cellobiase, and xylanase) involved in the degradation of relatively labile C-based molecules (e.g., starch, cellulose, and hemicellulose) were highly represented in an experimental area (p < 0.05). In addition, microbes in the experimental area exhibited a greater capacity for degrading recalcitrant C (e.g., lignin), which involves glyoxal oxidase (glx), manganese peroxidase (mnp), and phenol oxidase. Among the genes controlling nitrogen metabolism, the genes involved in denitrification, assimilation, ammonification, and nitrification were differentially expressed compared with the control area. These results indicated that microbial metabolic roles might have enhanced the C/N-flux speed and reduced the overall nutrient status. We concluded that OBD alleviates sediment nutrient overload under oyster farming from a microbial ecological perspective in a rapidly urbanized coastal area.

7.
Microorganisms ; 9(10)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34683340

RESUMO

The introduction of oysters to a waterbody is an efficient method for decreasing levels of eutrophication. Oysters affect sedimental environments and benthic microbes via their roles in nutrient cycling. However, little is known about how long-term oyster culturing affects benthic microbial community assembly. In the present study, top and bottom sediments from an oyster-culture area and non-culture area, in a eutrophic bay with a long history of oyster culturing, were obtained for environmental parameter measurement and microbe identification. Deterministic and stochastic processes in microbial community assembly were assessed. In particular, keystone species identification through network analysis was combined with measured environmental parameters to determine the factors related to community assembly processes. Our results suggest that oyster culturing relates to greater variation in both biological and non-biological sediment profiles. In benthic communities, Proteobacteria and Chloroflexi were the most abundant phyla, and community compositions were significantly different between sample groups. We also found that community assembly was more affected by deterministic factors than stochastic ones, when oysters were present. Moisture, or water content, and pH were identified as affecting deterministic and stochastic processes, respectively, but only water content was a driver associated with oyster culturing. Additionally, although keystone species presented a similar pattern of composition to peripheral species, they responded to their environments differently. Furthermore, model selection, fitting keystone species to community assembly processes, indicates their role in shaping microbial communities.

8.
Water Res ; 183: 116020, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32653764

RESUMO

Elucidating the interactions between algae and associated microbial communities is critical for understanding the mechanisms that mediate the dynamic of harmful algal blooms (HABs) in marine environment. However, the microbial functional profiles and their biogeochemical potential in HABs process remains elusive, especially during a complete natural HAB cycle. Here, we used pyrosequencing and functional gene array (GeoChip) to investigate microbial community dynamics and metabolic potential during a natural dinoflagellate (Noctiluca scintillans) bloom. The results shown that bacterioplankton exhibited significant temporal heterogeneity over the course of the bloom stages. Microbial succession was co-driven by environmental parameters and biotic interactions. The functional analysis revealed significant variations in microbial metabolism during matter cycling. At bloom onset-stage, metabolic potential associated with iron oxidation and transport was elevated. Carbon fixation and degradation, denitrification, phosphorus acquisition, and sulfur transfer/oxidation were significantly enhanced at the plateau stage. During the decline and terminal stages, oxidative stress, lysis of compounds, and toxin degradation & protease synthesis increased. This work reveal phycosphere microorganisms can enhanced organic C decomposition capacity, altered N assimilation rate and S/P turnover efficiency, and balancing of the Fe budget during HAB process. The ecological linkage analysis has further shown that microbial composition and functional potential were significantly linked to algal blooms occurrence. It suggest that structural variability and functional plasticity of microbial communities influence HAB trajectory.


Assuntos
Dinoflagelados , Microbiota , Organismos Aquáticos , Proliferação Nociva de Algas , Fósforo
9.
Front Microbiol ; 10: 2629, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31803162

RESUMO

Alexandrium minutum is a typical marine toxic dinoflagellate responsible for producing paralytic shellfish poisoning (PSP) toxins. Until now, we know little about the genomic information of A. minutum, so a transcriptome study was conducted to clarify the physiological adaptations related to nutritional deficiency. Here, we performed RNA-Seq analysis to assess the gene expression patterns of A. minutum under N and P deficient conditions for 0 (control), 6, and 72 h. Main differences between the control and experimental groups were observed in hydrolase activity and fatty acid, lipid, protein, and P metabolism. Activities of photosystem I (PSI) and PSII were significantly down-regulated, and the endocytosis pathway (clathrin-dependent endocytosis) was significantly enriched under N and P stress compared with the control, indicating that A. minutum shifts its trophy pattern under N and P stress. We also identified several unigenes related to the process of sexual reproduction, including sex determination, sperm-egg recognition, sex differentiation, mating, and fertilization. Approximately 50% of the successfully annotated unigenes were differentially expressed between the short-term stimulated sample (6 h) and control (R). However, the expression level of most unigenes returned to normal levels after 72 h, indicating that N and P stress plays a limited role in the induction of sexual reproduction. Furthermore, the quantitative real-time PCR (qRT-PCR) results of the five representative sex-related unigenes were consistent with sequencing data, which confirmed the authenticity of transcriptomic analysis. Also, qRT-PCR analysis showed that the long and short form transcripts of the saxitoxin biosynthesis gene (sxtA) were down-regulated under the nutrient deficient condition compared with the control, indicating that N and P stress regulates sxtA expression. Overall, transcriptome analysis of A. minutum revealed that N and P deficiency induced responses associated with stress response, photosynthetic efficiency, toxin biosynthesis, and sexual reproduction. Our data indicate that algae change their trophic modes (to facultative mixotrophy) and related physiological reactions under stress conditions; this possibly represents an ecological adaption strategy in the algal life cycle.

10.
Appl Environ Microbiol ; 85(15)2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31126952

RESUMO

Given the ecological significance of microorganisms in algal blooming events, it is critical to understand the mechanisms regarding their distribution under different conditions. We tested the hypothesis that microbial community succession is strongly associated with algal bloom stages, and that the assembly mechanisms are cocontrolled by deterministic and stochastic processes. Community structures and underlying ecological processes of microbial populations (attached and free-living bacteria) at three algal bloom stages (pre-, during, and postbloom) over a complete dinoflagellate Scrippsiella trochoidea bloom were investigated. Both attached and free-living taxa had a strong response to the bloom event, and the latter was more sensitive than the former. The contribution of environmental parameters to microbial variability was 40.2%. Interaction analysis showed that complex positive or negative correlation networks exist in phycosphere microbes. These relationships were the potential drivers of mutualist and competitive interactions that impacted bacterial succession. Null model analysis showed that the attached bacterial community primarily exhibited deterministic processes at pre- and during-bloom stages, while dispersal-related processes contributed to a greater extent at the postbloom stage. In the free-living bacterial community, homogeneous selection and dispersal limitation dominated in the initial phase, which gave way to more deterministic processes at the two later stages. Relative contribution analyses further demonstrated that the community turnover of attached bacteria was mainly driven by environmental selection, while stochastic factors had partial effects on the assembly of free-living bacteria. Taken together, these data demonstrated that a robust link exists between bacterioplankton community structure and bloom progression, and phycosphere microbial succession trajectories are cogoverned by both deterministic and random processes.IMPORTANCE Disentangling the mechanisms shaping bacterioplankton communities during a marine ecological event is a core concern for ecologists. Harmful algal bloom (HAB) is a typical ecological disaster, and its formation is significantly influenced by alga-bacterium interactions. Microbial community shifts during the HAB process are relatively well known. However, the assembly processes of microbial communities in an HAB are not fully understood, especially the relative influences of deterministic and stochastic processes. We therefore analyzed the relative contributions of deterministic and stochastic processes during an HAB event. Both free-living and attached bacterial groups had a dramatic response to the HAB, and the relative importance of determinism versus stochasticity varied between the two bacterial groups at various bloom stages. Environmental factors and biotic interactions were the main drivers impacting the microbial shift process. Our results strengthen the understanding of the ecological mechanisms controlling microbial community patterns during the HAB process.


Assuntos
Organismos Aquáticos/isolamento & purificação , Dinoflagelados/isolamento & purificação , Proliferação Nociva de Algas , Microbiota
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...